
X-ray Techniques for 
Crystallinity Analysis



Crystalline Materials
• Crystal is defined as a solid composed of atoms arranged 

in a pattern that is periodic in three dimensions

• All solid metals and ceramics have regular, repeating 
arrangements of atoms or molecules

STM image of platinum surface Point lattice



Molecular Crystal Structure Theory
The first comprehensive molecular crystal structure 

theory was the creation of the Abbé René Just Haűy
(1743 – 1822).

Haűy, one of the few major scientists  to be a catholic 
priest, had received a good scientific education and 
became interested in natural history 
(botany/mineralogy/crystallography). 

In 1784, he published his Essai d’une théorie sur la 
structure des crystaux, based on the unit of the 
compound molécule intégrante, specific in shape and 
composition for every compound.
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Haűy’s Theory: Molecules

Matter Theory: 2 Stage Molecular Model
Compound determinately-shaped polyhedral molécules intégrantes built out of 

Elementary molécules constituantes whose shapes are not inferable

Crystal Structure Theory: 2 Stage
Core: Primitive form, constant and common to crystals of same species, 

revealed by cleavage

Secondary (external) forms: Derived from primitive form by decrements 
(recessions) in each successive layer of molécules intégrantes by small integer 
number of molecules.



Haűy’s Theory: Crystal Structure
Haűy’s molecular structural  

models  

Traité de Minérologie

(1801). Fig. 13 & 16: 

cubic molécules intégrantes,

cubic primitive form 

simple  decrement 

rhomb-dodecahedron (Fig. 13)

complex decrements 

pentagon-dodecahedron (Fig. 16)



Crystalline Symmetry & Systems
The over-riding focus in 19th-century 

crystallography: abstract, 
mathematical considerations of 
crystalline symmetry.

This was initiated early in the 19th

century in Germany by Christian 
Samuel Weiss, (1780 – 1856) who 
preferred molecule models of crystal 
structure in favor of more dynamical 
ones, relating to axes of symmetry.

Influence of German Naturphilosophie. 

Monoclinic & triclinic  systems identified 
by Friedrich Mohs. Subsequently, the 
hexagonal system was divided into the 
trigonal and hexagonal, making 7 
systems.



Auguste Bravais (1811 -1863)

Bravais, a graduate of the École Polytechnique and a 
professor of physics, worked out a mathematical 
theory of crystal symmetry based on the concept of 
the crystal lattice, of which there were 14.
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Crystallography After Bravais
During the remainder of the 19th century, the basis for modern crystal 

structure theory was development on the basis of Bravais’s formulation of 
crystal lattices.

These developments were largely mathematical and had little concern with 
the actual interpretation of atomic and molecular arrangement. 



X-Ray Diffraction: April, 1912
Von Laue designed an experiment in which 

he placed a copper sulphate crystal 
between an X-ray tube and a 
photographic plate. His assistants, 
Walther Friedrich and Paul Knipping, 
carried out the experiment. After a few 
initial failures, they met with success on 
23 April, 1912. X-rays passing through the 
crystal formed the pattern of bright spots 
that proved the hypothesis was correct.”

http://www.nobelprize.org/nobel_prizes/physics/laureates/1914/perspe
ctives.html



Von Laue to Braggs
“Regarding the explanation, Laue thinks it is due to the diffraction 

of the röntgen rays by the regular structure of the crystal….He is, 
however, at present unable to explain the phenomenon in its 
detail.”*…

Once back in Cambridge, W. L. Bragg continued to pour over the 
Laue results, and recalled…the crystal structure theories of 
William Pope and William Barlow. He became convinced that 
the effect was optical and visualized an explanation in terms of 
the simple reflection of X-rays from the planes of atoms in the 
crystal. 

He thereby devised Bragg’s Law., nλ=2dsinθ.
*Letter, Lars Vegard – W.H. Bragg, June 26, 1912. John Jenkins, “A Unique Partnership: William and Lawrence Bragg 

and the 1915 Nobel Prize in Physics,” Minerva, 2001, Vol. 39, No. 4,  pp. 380-381. 



W.H. & W. L. Bragg, X-Rays and Crystal Structure (1915)

“It is natural to suppose that the Laue pattern 
owes its origin to the interference of 
waves diffracted at a number of centres
which are closely connected with the 
atoms or molecules of which the crystal is 
built, and are therefore arranged according 
to the same plan. 

The crystal is, in fact, acting as a diffraction 
grating.” (pp. 8-9).



W. H. & W. L. Bragg, X-Rays and Crystal Structure (1915)

Photos 

Top: William Henry Bragg 
(1862 – 1942); 

Bottom Wlliam Lawrence 
Bragg

(1890-1971)

Swedish postage stamp 
with Braggs



Geometry of Crystals

• Unit cell is the basic repeating unit that 
defines a crystal 

• Parallel planes of atoms intersecting the 
unit cell are used to define directions and 
distances in the crystal

• Each diffraction peak is produced by a 
family of atomic planes.

The hexagonal unit cell (a), and indices of planes and directions (b)

Figures adapted from Chapter 2 – The Geometry of Crystals of ``Elements of X-Ray Diffraction`` by Cullity

14 point lattices found in nature



LATTICE ARRAYS AND BRAVAIS LATTICES

Crystalline materials differ from amorphous materials in that in the former there is
order in the arrangement of the molecular contents whereas in the latter there is
no order or a tendency for a short-range order.

The packing of atoms, molecules or ions within a crystal occurs in a symmetrical
manner and furthermore this symmetrical arrangement is repetitive.
The most important common characteristic that crystals may share is the manner
in which repetition occurs. This is expressed in a common lattice array.

A lattice array is constructed from the arrangement of atomic material within the 
crystal



pma 2010

A 2-dimensional Lattice
Pick any position within the 2 dimensional lattice in Fig. 1(a) and note the
arrangement about this point. The chosen position can be indicated by
a point (a lattice point). In view of the repetitive arrangement, there will
be a 2 dimensional array of identical positions and if these are also
marked by a point a 2-dimensional lattice will result if the points are
joined.



In a real 3-dimensional crystal lattice the same ideas apply.

When crystal structures are represented by lattices, it transpires that all crystals
break down into one of fourteen three dimensional lattice arrangements.
Bravais demonstrated mathematically that there are only fourteen ways
in which repetitive symmetry can occur and the fourteen lattices representing
the ways in which repetition can occur are referred to as the Bravais lattices.

UNIT CELL
A unit cell can be any unit of a lattice array which when repeated in all directions,
and always maintaining the same orientation in space, generates the
lattice array. There is no unique way of choosing

a unit cell. For example, each of the
cells (A to D) in Fig. 2 are OK.
However, the cell favoured by
crystallographers is the one of
smallest volume that displays all of
the symmetry of the lattice.
Thus, cells C and A are the
preferred unit cells for the lattices
of Figs. 2 and 3 respectively.

A B

C D

A

B

Fig. 1 Fig. 2Fig. 2 Fig. 3



In general, six parameters are required to define the shape and size of a unit cell,
these being three cell edge lengths (conventionally, defined as a, b, and c),
and three angles (conventionally, defined as , , and ). In the strict 
mathematical sense, a, b, and c are vectors since they specify both length and 
direction. 
 is the angle between b and c,  is the angle between a and c,  is the angle
between a and b. The unit cell should be right handed. Check the cell above with 
your right hand
When these unit cells are combined with possible “centering” there are
14 different Bravais lattices.

UNIT CELL TYPES and THE SEVEN CRYSTAL SYSTEMS
Cubic a = b = c.     =  =  = 90º.
Tetragonal a = b  c.  =  =  = 90º.
Orthorhombic a  b  c.  =  =  = 90 º.
Monoclinic a  b  c.  = = 90º,   90º.
Triclinic a  b  c..       90º.
Rhombohedral a = b = c.     =  =   90 º.
(or Trigonal)
Hexagonal a = b  c.  =  = 90º,  = 120º. 

Orthorhombic

a

c
b
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1. Every crystal system has a primitive Bravais lattice. 

2. The distribution of lattice points in a cell must be such as to maintain the 
total symmetry of the crystal system.
Thus, the cubic system cannot have a C-type cell. 
3. The fact that a unit cell meets the symmetry requirements
of a crystal system does not guarantee its inclusion within the crystal system.
This could result if the lattice it generated could be equally well
represented by a unit cell type which is already included within the crystal

system.
The C-type cell for the tetragonal system (see Fig. 4) provides a good example.

Fig. 4

C - cell

P - Cell

Four simple points on crystal lattices:

4. If you repeat 3. within the orthorhombic
system you will find that the primitive cell you
generate will not have 90º angles. This is not
orthorhombic and thus orthorhombic C is
included in the crystal system.



Fig. 4

C - cell

P - Cell

A simplified view down c-axis can be 

used to illustrate points 3 and 4

Orthorhombic 

a ≠ b ≠ c, a = b =  = 90º

a

b

Angle not 90° smaller cell

not orthorhombic

Tetragonal 

a = b ≠ c, a = b =  = 90º

a
b

Smaller cell is Tetragonal P



SYMMETRY: POINT GROUP SYMMETRY AND SPACE GROUP SYMMETRY

Point group theory is not our scope. What follows is just a summary.

Point group symmetry defines the symmetry of an isolated object or
group of objects, whereas space group symmetry further defines the systematic
fashion in which an object, or group of objects is repeated in space to
generate an infinite periodic array in 3D.

Point group symmetry is quantified in terms of symmetry elements
(existing within the object or group of objects) and their associated operations.
Four symmetry elements are used to quantify point group symmetry

Symmetry Element Symmetry Operation
Rotation axis (n-fold) Rotation
Mirror plane Reflection
Centre of Symmetry Inversion
Rotor-reflection axis (n-fold) Rotation and reflection

or
Rotor-inversion axis (n-fold) Rotation and inversion



Symmetry Elements and Operations

“Symmetry elements define the (conceptual) motion of an 
object in space the carrying out of which, the symmetry 
operation, leads to an arrangement that is indistinguishable 
from the initial arrangement.”

Werner Massa, Crystal Structure Determination (2004), p. 41.



Rotation, reflection
and inversion
operations generate 
a variety of unique 
arrangements of 
lattice points (i.e., a 
shape structure) in 
three dimensions. 

Symmetry Operations ---} 32 Point Groups



UNIT CELL UNIT CELL

Positions of 2-fold axes
and mirror planes

Centres of 
symmetry

a

b

a

Fig. 5

(a) (b)

Point Group and Space Group Symmetry

To generate a 3D lattice from an object it is necessary to add translational
symmetry to point group symmetry. The two important space group
symmetry operations which move objects are glide planes and screw
axes. These operations combine translation and reflection and translation
and rotation respectively.

The pentagons on the
left are related by
simple translation.
In 5(b) the pentagon
on the top left of the
cell is related to the
one in the centre by
translation a/2 followed
by either reflection or
rotation. Centres of
inversion in 5(b) are
marked with tiny
circles.



There is an infinite number of combinations of the four symmetry elements.
However, if there is a restriction on the order of the rotation axes to
2, 3, 4, and 6, as is the case for repetitive symmetry (crystallographic
symmetry) this leaves only 32 unique combinations. These are the 32
crystallographic point groups. Adding screw axes and glide planes gives
the 230 space groups. The overall breakdown of symmetry for crystals
then is as shown in Fig. 9.

The 230 Space Groups

CRYSTAL SYSTEMS (7)  

Cubic

Tetragonal

Orthorhombic

Monoclinic

Triclinic

Rhombohedral

Hexagonal

BRAVAIS LATTICES (14)

P

F

I

P

I

P

F

I

P

C

P

P

SPACE GROUPS (230)

49

19

30

9

C and A 15

5

8

5

2

27

P and R 25

68

59

13

2

25

27

36

15

11

10

Fig. 9

Space Group determination is an 
important step in crystal  structure 
determination.

The International Tables for 
Crystallography list the symmetry 
properties for all 230 Space Groups. The 
2nd edition was in one volume and edited 
by Kathleen Lonsdale. The current edition 
runs to 7 volumes.
The CSD or Cambridge Data Base is a 
repository for the structures of organic 
and organometallic compounds.



CRYSTAL PLANES AND MILLER INDICES

Crystal planes are defined by the
intercepts they make on the
crystal axes of the unit cell.
The inverse of these fractions are
the Miller Indices of the planes.

In (a) the intercepts are ½, ½, 1 and
the Miller Indices are (2 2 1).
In (c) the intercepts on b and c are at
infinity the inverse of which is 0 and
the plane is the (2 0 0).
In (f) the plane cuts the negative c
axis at -1 and thus is (1 1 -1). In
crystallography -1 is often written ī
and pronounced “Bar 1”. 



Site      Na+ Cl-

Central  0      1

Face     6/2   0

Edge     0    12/4

Corner  8/8   0

Total     4      4

Important Cubic Lattice Types

Two of the most important cubic lattice types are the NaCl type and the
CsCl type.

Stoichiometry (formula) from the Unit Cell

In the CsCl structure both ions have coordination numbers of 8 and the structure

is a simple primitive

Formula Cs at centre = 1

8 x 1/8Cl = 1 = CsCl

NaCl crystallizes in the Space Group Fm-3m

The unit cell of a cubic close packed
metal has a face centered lattice
The formula of the unit cell is:
6 x ½ + 8 x 1/8 = 4



Name and formula
Reference code: 00-001-1260 

PDF index name: Nickel 
Empirical formula: Ni
Chemical formula: Ni
Crystallographic parameters

Crystal system: Cubic 
Space group: Fm-3m 

Space group number: 225
a (Å): 3.5175 
b (Å): 3.5175 
c (Å): 3.5175 
Alpha (°): 90.0000 
Beta (°): 90.0000 
Gamma (°): 90.0000 

Measured density (g/cm^3): 8.90 
Volume of cell (10^6 pm^3): 43.52 

Z: 4.00 
RIR: -
Status, subfiles and quality

Status: Marked as deleted by ICDD
Subfiles: Inorganic
Quality: Blank (B)

References
Primary reference: Hanawalt et al., Anal. Chem., 10, 475, (1938)

Optical data: Data on Chem. for Cer. Use, Natl. Res. Council Bull. 107
Unit cell: The Structure of Crystals, 1st Ed.



DIFFRACTION AND THE BRAGG EQUATION

Max von Laue was the first to
suggest that crystals might
diffract X-rays and he also
provided the first explanation
for the diffraction observed.
However, it is the explanation
provided by Bragg that is simpler
and more popular.
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(2,0,0)

(1,0,0)

E F

UNIT

CELL

In the Bragg view, crystal
planes act a mirrors.
Constructive interference
is observed when the path
difference between the two
reflected beams = nl.

The path difference is
2my. Since my/d = sin

2my = 2dsin = nl

where d is the interplanar spacing.



Determination of the Lattice type

High symmetry can lead to 
reflections being systematically 
absent from the data set. 
Absent reflections have no 
measurable intensity. 

The general absences 
determine the lattice type;

Primitive (P) has no general 
absences and no restrictions 
on h, k or l.

End Centered (C) h+k=2n+1 
are all absent.

Face Centered (F) only h, k, l, 
all even or all odd are 
observed.

Body Centered (I) 
h+k+l=2n+1 are all absent.

Cubic

Tetragonal

Orthorhombic

Monoclinic

Triclinic

Primitive Cell

Body

Centred

Cell

Face

Centred

Cell

End Face Centred

Cell

P

I F

C

Trigonal

Hexagonal



Structure Factor

2 ( )
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  
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Bravais Lattice Reflections possibly present Reflections necessarily absent

Simple All None

Body Centered (h+k+l): Even (h+k+l): Odd

Face Centered h, k, and l unmixed i.e. all 
odd or all even 

h, k, and l: mixed

− h,k,l : indices of the diffraction plane under consideration 
− u,v,w : co-ordinates of the atoms in the lattice
− N : number of atoms 
− fn : scattering factor of a particular type of atom

Intensity of the diffracted beam  |F|2
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For an orthogonal system ( =  =  = 90°) the relationship between

interplanar spacing (d) and the unit cell parameters is given by the

expression:

This is the expression for an orthorhombic crystal.

For the tetragonal system it reduces to

and, for the cubic system, it further reduces to

Determination of the Lattice parameters



• Complete determination of an unknown crystal structure is possible 
by

1. Calculation of the size and shape of the unit cell from the angular positions of the 
diffraction peaks 

2. Computation of the number of atoms per unit cell from the size and shape of the unit cell, 
the chemical composition of the specimen, and its measured density

3. Deduction of the atom positions within the unit cell from the relative intensities of the 
diffraction peaks

The first step is indexing pattern – assigning Miller indices to each peak

Lattice Parameter Determination



l sin2dn 

The Bragg equation may be rearranged (if n=1)

from to 
l 2

2

2

sin
4


d

If the value of 1/(dh,k,l)
2 in the cubic system equation above is inserted into

this form of the Bragg equation you have

)(
4

sin 222

2

2
2 lkh

a
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l


Since in any specific case a and l are constant and if l2/4a2 = A

)(sin 2222 lkhA 



Lattice Parameter Determination

• In the cubic system, the first reflection in the diffraction pattern is due to 
diffraction from planes with Miller indices (100) for primitive cubic, (110) for body-
centered cubic, and (111) for face-centered cubic lattices, 

so h2 + k2 + l2 = 1, 2, or 3, respectively 

Comparing the observed integer values of the peaks with the characteristic line sequences in 
the cubic system

Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, … 

Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, … 

Face-centered cubic: 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, … 

Diamond cubic: 3, 8, 11, 16, 19, 24, 27, 32, … 

Calculate the average lattice parameter by least squares method



Lattice Parameter Determination

Example for an FCC material



Lattice Parameter Determination

• Calculation of the lattice parameter from one peak is prone to error due to
• Displacement of the specimen from the diffractometer axis
• Misalignment of the instrument
• Use of a flat specimen instead of a speciment curved to confrom to the focusing 

circle
• Absorption in the specimen
• Vertical divergence of the incident beam
These errors cause Δd/d to be approximately proportional to cos2θ
Accurate lattice parameter value can be obtained by simple extrapolation against cos2θ
using the least squares method



Indexing a Laue powder pattern 

1

2

S
θ (for front reflections)or

2W

S
θ 1 (for back reflections)

2 W




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 
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 

hkl 2 2 2

2 2

2 2 2 2

a
d

h k l

which gives rise to

sin θ

h k l 4a

which is a constant

l


 


 

Bragg’s Law
nl = 2d sin

For cubic crystals



Indexing

BCC

S1 (mm) () sin2 h2+k2+l2 sin2/ h2+k2+l2

Not BCC

38 19.0 0.11 2 0.055

45 22.5 0.15 4 0.038

66 33.0 0.30 6 0.050

78 39.0 0.40 8 0.050

83 41.5 0.45 10 0.045

97 49.5 0.58 12 0.048

113 56.5 0.70 14 0.050

118 59.0 0.73 16 0.046

139 69.5 0.88 18 0.049

168 84.9 0.99 20 0.050

Not Constant

Simple Cubic

S1 (mm) () sin2 h2+k2+l2 sin2/ h2+k2+l2

Not Simple 
Cubic

38 19.0 0.11 1 0.11

45 22.5 0.15 2 0.75

66 33.0 0.30 3 0.10

78 39.0 0.40 4 0.10

83 41.5 0.45 5 0.09

97 49.5 0.58 6 0.097

113 56.5 0.70 8 0.0925

118 59.0 0.73 9 0.081

139 69.5 0.88 10 0.088

168 84.9 0.99 11 0.09

Not Constant

FCC; wavelength=1.54056Å

S1

(mm)
() sin2 h2+k2+l2 sin2/ h2+k2+l2 Lattice Parameter, a  (Å)

38 19.0 0.11 3 0.037 4.023

45 22.5 0.15 4 0.038 3.978

66 33.0 0.30 8 0.038 3.978

78 39.0 0.40 11 0.036 4.039

83 41.5 0.45 12 0.038 3.978

97 49.5 0.58 16 0.036 4.046

113 56.5 0.70 19 0.037 4.023

118 59.0 0.73 20 0.037 4.023

139 69.5 0.88 24 0.037 4.023

168 84.9 0.99 27 0.037 4.023

Constant; so it is FCC



ANALYSIS OF X-RAY POWDER DIFFRACTION DATA

Diffraction data have been collected on a powder diffractometer for a series of
compounds that crystallise in the cubic system

Example 1

Aluminium powder gives a diffraction pattern that yields the following eight
largest d-spacings: 2.338, 2.024, 1.431, 1.221, 1.169, 1.0124, 0.9289
and 0.9055 Å. Aluminium has a cubic close packed structure and its
atomic weight is 26.98 g and l = 1.5405 Å .

Index the diffraction data and calculate the density of aluminium.

)(sin 2222 lkhA 

l sin2dThe Bragg equation, are used to obtain sin,
d2

sin
l

 

Aluminum lattice is an F type lattice and the only reflections observed are those
with all even or all odd indices.

Thus the only values of sin2 in that are allowed

are 3A, 4A , 8A, 11A, 12A,16A and 19A for the first eight reflections. 



d/Å Sin Sin2 Calc. Sin2 (h, k, I)

2.338 0.32945 0.10854 (1,1,1)

2.024 0.38056 0.14482 0.14472 (2,0,0)

1.431 0.53826 0.28972 0.28944 (2,2,0)

1.221 0.63084 0.39795 0.39798 (3,1,1)

1.169 0.65890 0.43414 0.43416 (2,2,2)

1.0124 0.76082 0.57884 0.57888 (4,0,0)

0.9289 0.82921 0.68758 0.68742 (3,3,1)

0.9055 0.85063 0.72358 0.72360 (4,2,0)

Insert the values into a table and compute sin and sin2.

Since the lowest value of sin2 is 3A and the next is 4A the first

entry in the Calc. sin2 column is (0.10854/3)*4 etc.

The reflections have now been indexed.



For the first reflection (for which h2 + k2 + l2 = 3)

sin2 = 3A = 3 ( l2 / 4a2 )

a2 = 3l2 / 4sin2

a = 4.04946 Å  =  4.04946 x 10-8 cm.

Calculation of the density of aluminium

a3 = 66.40356 Å3 = 66.40356 x 10-24 cm3. 

If the density of aluminium is r (g. cm.-3), the mass of the unit cell is

r x 66.40356 x 10-24 g.

The unit cell of aluminium contains 4 atoms.

The weight of one aluminium atom is 26.98/(6.022 x 1023) = 4.48024 x 10-23

and the weight of four atoms (the content of the unit cell) is 179.209 x 10-24.

r x 66.40356 x 10-24 = 179.209 x 10-24

p = 2.6988 g.cm-3.

Calculation of a



On the basis that the structure is cubic and of either the NaCl or CsCl type

1. Index the first six reflections. 

2. Calculate the unit cell parameter.

3. Calculate the density of AgCl. 
4. (Assume the following atomic weights: Ag, 107.868; Cl, 35.453;

and Avogadro’s number is 6.022 x 1023)

Example-2 The X-ray powder diffraction pattern of AgCl obtained using radiation of

wavelength 1.54Å is shown below. The peaks are labelled with 2θ values



Since  values are available sin2 values can be calculated and inserted

in a table. 

1. for a face centred lattice 3A, 4A , 8A, 11A, 12A and 16A

2. for a primitive lattice 1A, 2A, 3A, 4A, 5A and 6A 

2  Sin2

27.80 13.90 0.0577

32.20 16.10 0.0769

46.20 23.10 0.1539

54.80 27.40 0.2118

57.45 28.73 0.2310

67.45 33.73 0.3083

The second option is not possible as the first 2 are not in the ratio of 1:2.

To test the first option, divide the first by 3 and multiply the result by 4, 8 etc.

Calc. Sin2

0.07693

0.1539

0.2116

0.2308

0.3077

From Sin2 = A(h2 + k2 + l2) the possible values are:



Since sin2 = l2(h2 + k2 + l2)/4a2

a2 = (1.54)2.(16)/4(0.3083) using the largest (most accurate) 2

a2 = 30.7692

a = 5.547Ǻ (1Ǻ = 10-8 cm)

Formula wt. of unit cell = 4AgCl = 573.284g

This is the weight of 4 moles of AgCl.

The weight of 4 molecules is 573.284 / (6.02 x 1023)

Density = 573.284 / (6.02 x 1023)(5.547 x 10-8)3

a is in Ǻ thus the answer should be multiplied by 1 / 10-24

Density = 5.580 g/cm3

Density of AgCl



Example



Example



X-RAY FLUORESCENCE
(XRF)



X-ray florescence spectroscopy enables determining elemental composition of

samples by analyzing the characteristic X-rays that are emitted from the samples. High

energy primary X-rays are used to generate these secondary X-rays.

Characteristic X-rays can be analyzed based on their wavelengths or energies.

There are two types of XRF methods:

Wavelength dispersive spectroscopy (WDS)

Energy dispersive spectroscopy (EDS)



XRF is a fast, accurate and non-destructive material characterization method that
requires small amount of sample
Measurement time varies between seconds and about 30 minutes per sample
depending on the number of determined elements
The quantitative analysis based on measurement results takes seconds to
complete



WDS
(WDXRF)

EDS
(EDXRF)



A typical XRF consists of 3 components:

• X-ray source (The same as in XRD, power of 0.5 – 3 kW and voltage of 30 – 50 kV.

Typical anode materials are Cr, Rh, W, Ag, Au and Mo)

• X-ray detector

• Data acquisition and processing system

WDS and EDS based XRF devices differ due to their X-ray detectors
WDS method utilizes a single crystal to diffract the characteristic X-rays that are
fluoresced from the sample, according to the Bragg’s law
EDS method utilizes a photon detector (typically a Si(Li) diode) to sort fluoresced photons
according to their energies



WDS (Wavelength Dispersive Spectroscopy)

XRF technique was invented based on the WDS in 1950s

Compared to the much simple EDS set-up, WDS provides higher resolution and elemental

analysis for a wider atomic number range

WDS systems are capable of resolving the

(Dl/l) at a resolution between 0.002-0.02 A

and analyzing elements with atomic number

greater than 6 (C and higher)

WDS systems are very similar to XRD

in operating principles



WDS
The analysis crystal type is of high importance as it determines the range of detectable

atomic numbers

Bragg law is used to calculate the wavelength range that are detectable by a crystal

A maximum  degree of 73 is applicable



WDS
Each peak in a WDS spectrum represents the characteristic fluorescence of the related

element. The relative intensity of the diffracted characteristic X-rays are shown in the y-

axis



WDS
More than one crystal may be used to analyze

all the fluorescent X-rays from one sample

(LiF and TAP crystals are utilized to obtain

spectrum from a Nickel alloy in the figure )



WDS (Wavelength Dispersive Spectroscopy)

Simultaneous WDXRF with different diffracting crystals 
and detecting systems for analysis of different elements

WDXRF system with a direct 
diffracting 2D optical system



EDS
Energy Dispersive Spectroscopy



Si(Li) detector is used in a typical EDS system. This
detector is composed of a small cylinder of p-type Si
and Li, combined in the form of a diode.
X-ray photons collected by the detector produce a pair
of electron gaps. These photons have to have an
average energy to produce electron gap pairs in Si(Li)
diodes.
More pairs result from higher energy photons.
Characteristic X-rays are sorted according to their
energies.
X-ray photons pass through a very thin (10 mm)
beryllium window before hitting the detector A: P-tipi silisyum

B: lityum bölgesi

C: n-tipi silisyum



EDS Spectrum

EDS analysis of glass



EDXRF Geometry

• There are 2 fundamental spectroscopes: 2D and 3D

• They both contain an X-ray source and EDS 
detector. They differ by the optical path taken by 
the X-rays

2D optik sistemli 3D optik sistemli



EDS(EDXRF) spectroscope with 2D 
optical system

• X-ray photons that are emitted from the source are directed towards the
sample and the fluorescent photons are directed to the detector

• In this setup the detector receives both the fluorescent photons and the
photons emitted from the source which produce noise in the spectrum.
This makes identification of trace elements with small peaks difficult.

Direct emission in a 2D optical system



EDS(EDXRF) spectroscopy with 2D 
optical system

EDXRF spectrum of soil



EDS(EDXRF) spectroscopy with 3D 
optical system

• X-rays emitted from the source are directed through two planes that are
oriented across each other. X-rays are sent to a secondary target which
converts them to monochromatic photons that are directed towards the
sample

• This setup has the advantage of preventing the

Primary X-rays from reaching the detector resulting

in a very low noise

Indirect emission in a 3D optical system



EDS(EDXRF) spectroscopy with 3D 
optical system

EDXRF spectrum of soil using 3D optical system



EDS detector in the SEM

• EDS detectors are integrated into the SEM and TEM because they

are simpler than WDS. This setup enables elemental analysis

during microstructural analysis.

The main difference between the EDXRF and the EDS in SEM is the

mechanism of fluorescence from the sample. A high energy electron

beam is used in SEM EDS to generate fluorescence.



EDS setup in a TEM Orientation of the X-ray detector for rough surface analysis

EDS detector in the SEM



X-ray fluorescence zones from samples with different atomic numbers



Comparison of WDXRF and EDXRF Techniques



Background correction for
two separate peaks

Background correction and peak profiling for
two overlapping peaks

Background and profile 
corrections

A B



Peak intensity measurement and background
correction



Overlap factor

Peak overlapping and correction



Quantitative analysis using EDXRF ve WDXRF

• Intensity in EDXRF is obtained from peak area while peak height is used

for intensity measurement in WDXRF

• After a few calibration runs, the device converts relative peak intensities

into quantities

• Peak intensity in the spectrum does not only depend on the

concentration of the original element but also on the number and

intensities of other elements

• Presence of other elements may weaken or strengthen the intensity



Weight fraction of an element (X) is proportional to its relative intensity (IR) by
the instrument factor (K) and the sample matrix factor (M).

K is related to the condition of the source, emission and geometric position of

the sample

M contains 3 basic matrix factors:

1. Absorption of the X-ray by the sample
2. Secondary absorption
3. Secondary fluorescence

Quantitative analysis with EDXRF ve WDXRF
Techniques
X = M * K * IR



Strengthening of the intensity of one element by
the secondary fluorescence of another element

A B

Absorption by the sample


